How did the moon really form

first_img Click to view the privacy policy. Required fields are indicated by an asterisk (*) Email Early in its life, a Mars-sized object slammed into Earth and gave birth to the moon. That’s been the prevailing idea for decades, though it’s taken some hits recently. Now, new simulations suggest that the original idea may indeed be correct.Planetary scientists proposed the collision hypothesis in the 1970s. It seemed to explain a basic fact about the moon: Its composition is similar to Earth’s mantle. This similarity arose, the thinking went, because the impact blasted material from the mantle into space, where it gathered together to become the moon. Later, however, computer simulations showed that most lunar material actually came from the impactor instead, which means the impactor’s composition must have resembled Earth’s mantle. No one knows where this impactor came from, but had it not blasted itself to smithereens by bashing Earth, it might have survived as another planet of our solar system.Recent studies have questioned the original impactor scenario. That’s because most objects hitting modern Earth—like meteorites—differ from our world, having different proportions of oxygen isotopes. A 2007 computer simulation, for example, suggested that only about 1% of the large objects hitting early Earth matched its isotopic composition. Thus, few impactors would have produced a moon with a composition so similar to that of Earth. This has caused scientists to propose alternative models. One idea was that Earth spun very fast when the impactor hit, so that centrifugal force lifted a large amount of mantle material into the moon, thereby explaining the similarity in composition. Sign up for our daily newsletter Get more great content like this delivered right to you! Countrycenter_img Now, new work finds that a much greater percentage of these impactors actually matched Earth’s composition, thereby bolstering the original collision hypothesis. Planetary scientists Alessandra Mastrobuono-Battisti and Hagai Perets of the Technion-Israel Institute of Technology in Haifa and Sean Raymond of the Laboratory of Astrophysics of Bordeaux in France have analyzed simulations of how the inner solar system may have formed through the collision and merger of 1000 to 2000 protoplanets into three or four final planets. Although the compositions of the final planets were very different, as expected, when the scientists looked at the composition of the final large impactor that struck each planet it was often quite similar in makeup to the planet it hit. “What we found is that these two bodies [planet and impactor] can be very similar,” Mastrobuono-Battisti says. As the scientists report online today in Nature, 20% to 40% of the planet-impactor pairs had similar enough compositions to produce the sort of Earth-moon similarity we see today.”This is a very important piece of the puzzle,” says Robin Canup, a planetary scientist at the Southwest Research Institute in Boulder, Colorado. She had grown pessimistic that the standard model was the right answer. “At face this makes it look like [that] scenario is the most probable,” she says. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwelast_img


Leave a Reply

Your email address will not be published. Required fields are marked *